Suppose UU and VV are finite-dimensional vector spaces and SL(V,W)S \in \mathcal L(V,W) and TL(U,V)T \in \mathcal L(U,V). Prove that

dimrange STmin{dimrange S,dimrange T}.\dim \text{range }ST \le \min\{\dim \text{range }S, \dim \text{range }T\}.

Since range STrange S\text{range }ST \subseteq \text{range }S we immediately have dimrange STrange S\dim \text{range }ST \le \text{range }S
meaning it suffices to show dimrange STrange T\dim \text{range }ST \le \text{range }T.

Consider SRS|_R as a map from range T\text{range }T to range S\text{range }S. Apply 3.22 to get

dimrange T=dimrange SR+dimnull SRdimrange SR\begin{aligned} \dim \text{range }T &= \dim \text{range }S|_R + \dim \text{null }S|_R \\ &\ge \dim \text{range }S|_R \\ \end{aligned}

It suffices to show dimrange ST=dimrange SR\dim \text{range }ST = \dim \text{range }S|_R since it would imply

dimrange STdimrange T\dim \text{range }ST \le \dim \text{range }T

Proof of dimrange ST=dimrange SR\dim \text{range }ST = \dim \text{range }S|_R. If yrange STy \in \text{range }ST then there exists an xx with y=S(Tx)y = S(Tx) so clearly y=SR(Tx)y = S|_R(Tx) and range STdimrange SR\text{range }ST \subseteq \dim \text{range }S|_R. Now suppose yrange SRy \in \text{range }S|_R, then y=Szy = Sz where z=Txz = Tx for some xx, implying y=STxy = STx and thus range SRrange ST\text{range }S|_R \subseteq \text{range }ST.


I learned two new techniques doing this exercise!