Suppose VV and WW are finite-dimensional with dimVdimW2\dim V \ge \dim W \ge 2.
Show that {TL(V,W):T is not surjective}\{T \in \mathcal L(V,W) : T\text{ is not surjective}\} is not a subspace of L(V,W)\mathcal L(V,W).


Like 3b/7 it isn't closed under addition.

Let v1,,vmv_1,\dots,v_m be a basis for VV and w1,,wnw_1,\dots,w_n be a basis for WW. Define

T(a1v1++anvn++amvm)=a2w2++anwnS(a1v1++anvn++amvm)=a1w1\begin{aligned} T(a_1v_1+\dots+a_nv_n+\dots+a_mv_m) &= a_2w_2 + \dots + a_nw_n \\ S(a_1v_1+\dots+a_nv_n+\dots+a_mv_m) &= a_1w_1 \end{aligned}

Neither TT nor SS span WW, but (T+S)(T + S) does span WW.